





EE347

Chauhan AS<sup>1</sup>, Sibson NR<sup>2</sup>, Campbell SJ<sup>2</sup>, Lord S<sup>2</sup>, Rose J<sup>1</sup>, Bajre M<sup>1</sup>

<sup>1</sup> Health Innovation Oxford and Thames Valley, Oxford, UK<sup>2</sup> Department of Oncology, University of Oxford, Oxford, UK

### Introduction

Brain metastases affect 20–40% of metastatic breast cancer patients, especially HER2-positive and triple-negative subtypes, with poor prognosis and limited CNS response to systemic therapy due to the blood–brain barrier (BBB).<sup>1,2</sup>

Mutant tumour necrosis factor (mutTNF), a TNFR1-selective biologic, transiently permeabilises the BBB at tumour sites, enhancing intracranial delivery of systemic agents in preclinical models.<sup>3,4</sup>

With GMP production underway and early clinical trials approaching, there is an urgent need for health economic evidence to assess mutTNF's value and inform NHS adoption, pricing, and reimbursement.

# Aims

To evaluate the cost-effectiveness of standard treatment and management for breast cancer brain metastases (BCBM), with and without the addition of mutTNF.

# Objectives

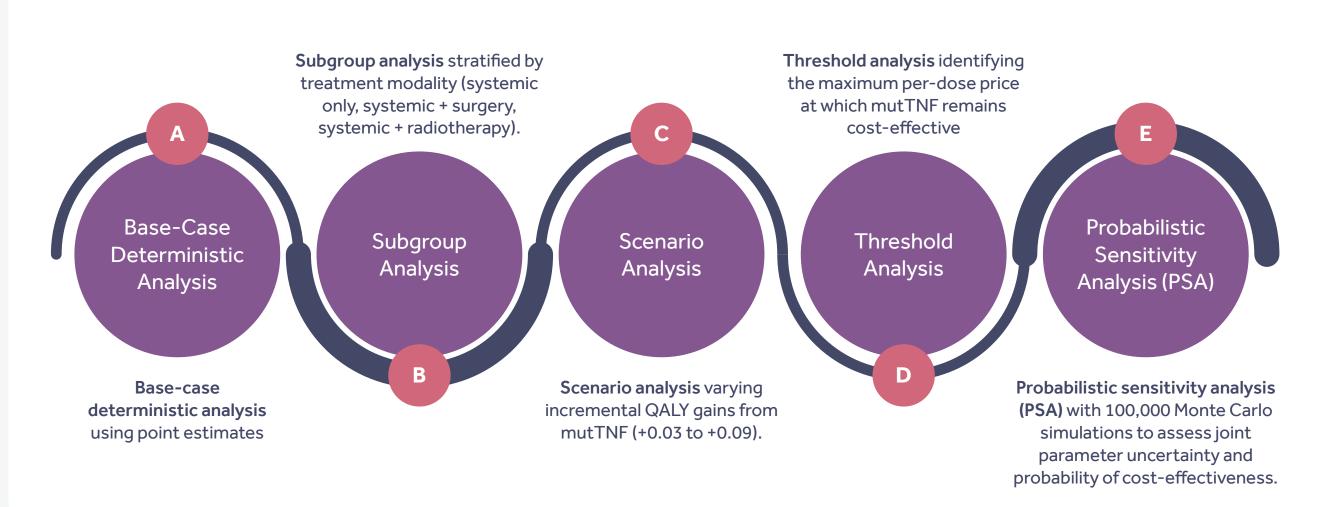
- Conduct a cost-effectiveness analysis comparing standard care with and without mutTNF, estimating incremental costs, quality-adjusted life-years (QALYs), the incremental cost-effectiveness ratio (ICER), and net monetary benefit (NMB).
- Provide a clinically and mechanistically coherent comparator framework.
- Undertake subgroup analyses.
- Perform scenario and threshold analyses.
- Implement probabilistic sensitivity analysis (PSA) to assess decision uncertainty.
- Generate recommendations to inform NHS integration, reimbursement, and policy.

### Methods

#### Comparators

This evaluation directly compared two strategies:

- Standard care: the established treatment framework for patients with BCBM, including systemic therapy alone or in combination with surgery or radiotherapy.
- Standard care + mutTNF: the same framework, augmented with mutTNF

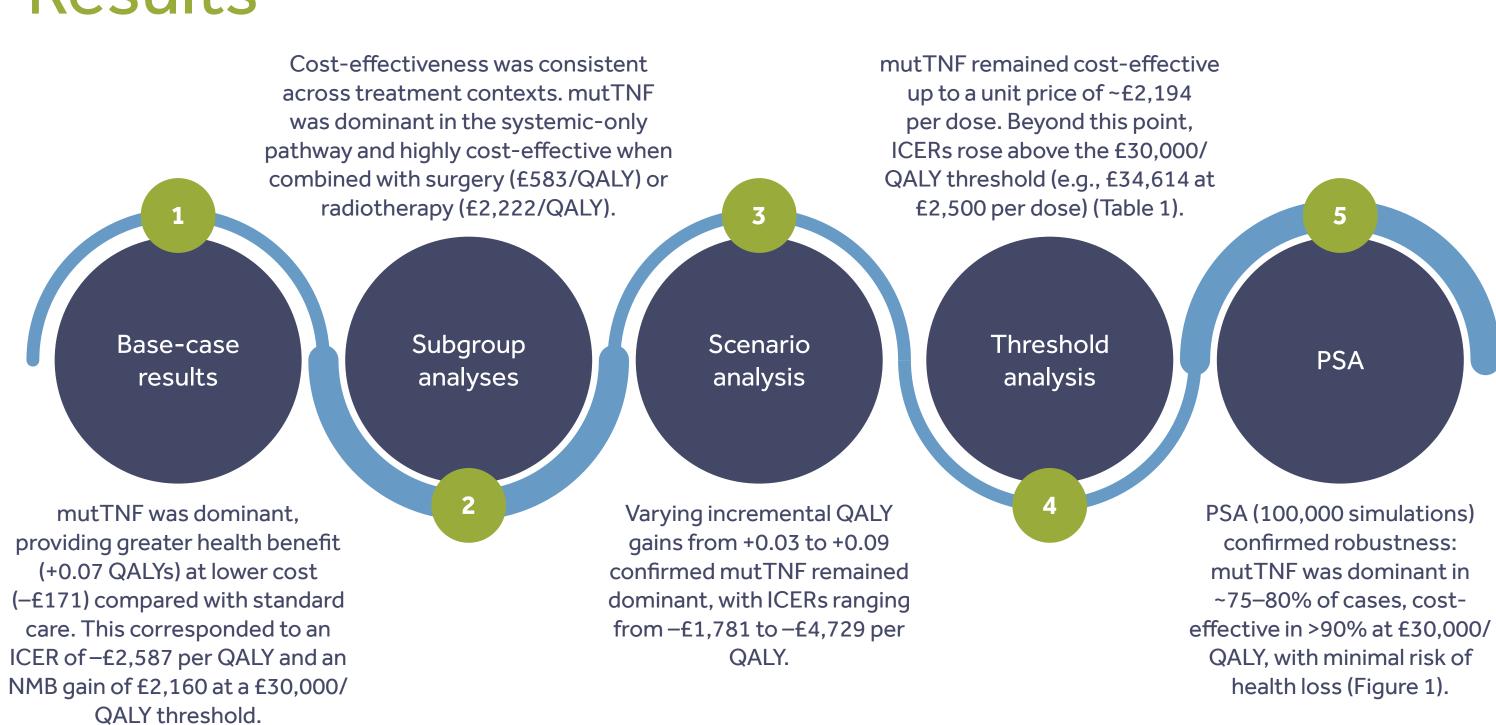

#### **Perspective and Time Horizon**

- UK NHS perspective
- 1-year horizon, aligned with BCBM clinical course and NICE early modelling guidance

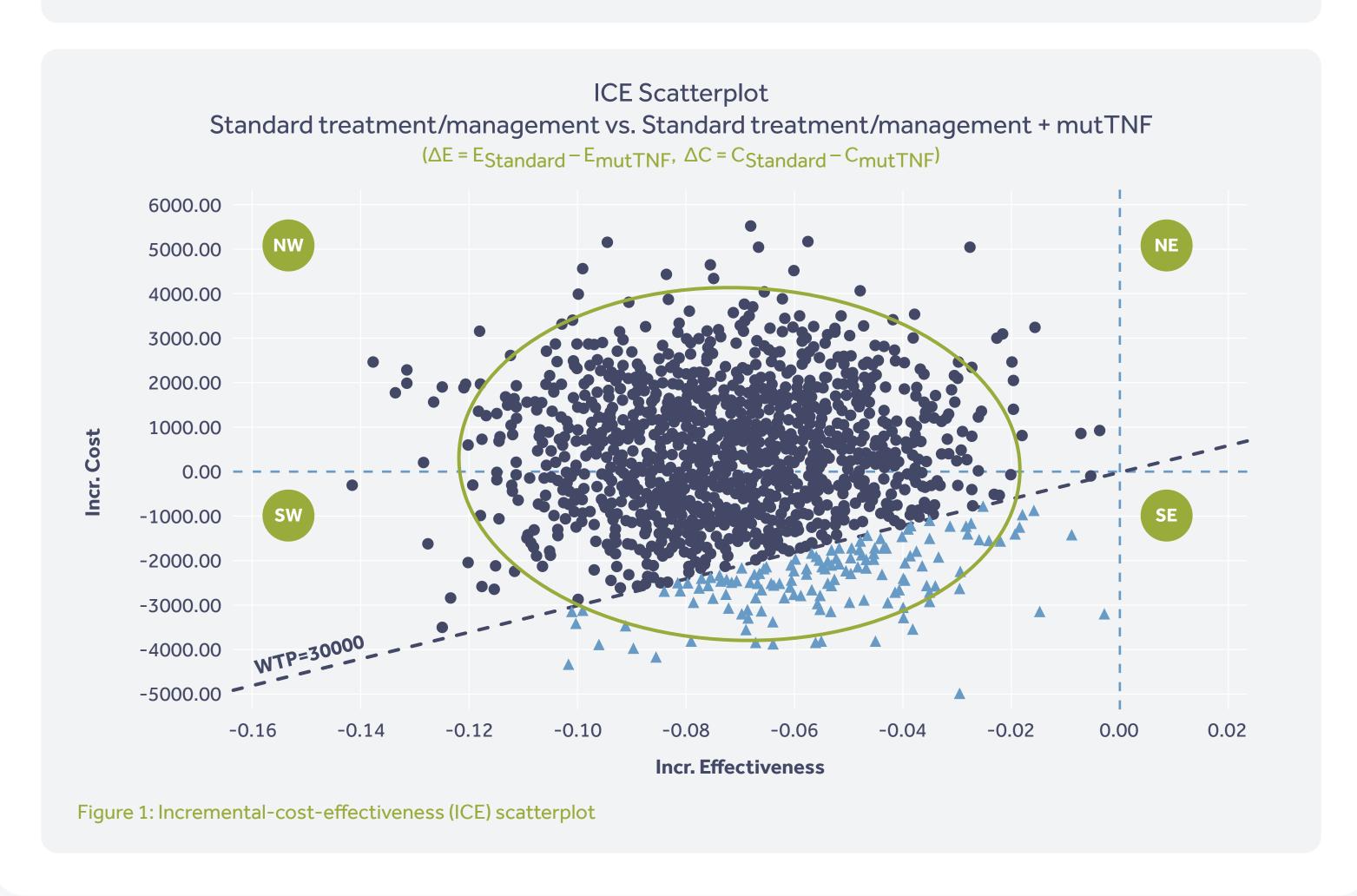
#### **Model Framework and Outcomes**

- Decision-analytic model to estimate total costs and QALYs
- Outcomes: ICER and NMB at £30,000/QALY threshold

#### Analyses




### Conclusion


mutTNF is likely to be a cost-effective adjunct to BCBM care, even under conservative assumptions. The findings offer strategic insights to inform value-based pricing, trial design, and early HTA engagement.

Early Economic Modelling of Mutant TNF (mutTNF) as a BBB-Permeabilising Adjunct in Breast Cancer Brain Metastases (BCBM): A UK NHS Perspective

# Results



| Cost input -<br>nutTNF (£) | Total Cost<br>(£) | Incr. Cost<br>(£) | Effectiveness<br>(QALYs) | Incr. Effectiveness (QALYs) | ICER<br>(£/QALY) | NMB (£) | C/E<br>(£/QALY) |
|----------------------------|-------------------|-------------------|--------------------------|-----------------------------|------------------|---------|-----------------|
| 50                         | 28333             | -156              | 0.72                     | 0.07                        | -2361            | -6853   | 39571           |
| 100                        | 28383             | -106              | 0.72                     | 0.07                        | -1607            | -6903   | 39641           |
| 200                        | 28483             | -6                | 0.72                     | 0.07                        | -97              | -7003   | 39781           |
| 400                        | 28683             | 194               | 0.72                     | 0.07                        | 2921             | -7203   | 40060           |
| 600                        | 28883             | 394               | 0.72                     | 0.07                        | 5939             | -7403   | 40339           |
| 800                        | 29083             | 594               | 0.72                     | 0.07                        | 8958             | -7603   | 40619           |
| 1000                       | 29283             | 794               | 0.72                     | 0.07                        | 11976            | -7803   | 40898           |
| 1500                       | 29783             | 1294              | 0.72                     | 0.07                        | 19522            | -8303   | 41596           |
| 1532                       | 29814             | 1325              | 0.72                     | 0.07                        | 20000            | -8335   | 41640           |
| 1700                       | 29983             | 1494              | 0.72                     | 0.07                        | 22541            | -8503   | 41876           |
| 2000                       | 30283             | 1794              | 0.72                     | 0.07                        | 27068            | -8803   | 42295           |
| 2100                       | 30383             | 1894              | 0.72                     | 0.07                        | 28578            | -8903   | 42434           |
| 2194                       | 30477             | 1988              | 0.72                     | 0.07                        | 30000            | -8997   | 42566           |
| 2200                       | 30483             | 1994              | 0.72                     | 0.07                        | 30087            | -9003   | 42574           |
| 2500                       | 30783             | 2294              | 0.72                     | 0.07                        | 34614            | -9303   | 42993           |
| 3500                       | 31783             | 3294              | 0.72                     | 0.07                        | 49707            | -10303  | 44390           |
| 5000                       | 33283             | 4794              | 0.72                     | 0.07                        | 72345            | -11803  | 46485           |



#### References

- 1. Lin NU, Amiri-Kordestani L, Palmieri D, Liewehr DJ, Steeg PS. CNS metastases in breast cancer: old challenge, new frontiers. Clin Cancer Res. 2013;19(23):6404–6418.
- 2. Niwińska A, Murawska M, Pogoda K. Breast cancer brain metastases: differences in survival depending on biological subtype, RPA
- RTOG prognostic class, and systemic treatment after whole-brain radiotherapy. Ann Oncol. 2010;21(5):942–948.

  3. Connell JJ, Chatain G, Cornelissen B, Vallis KA, Hamilton A, Seymour L, et al. Selective permeabilization of the blood–brain barrier at sites of metastasis. J Natl Cancer Inst. 2013;105(21):1634–1643.
- 4. Muñoz Pinto MF, Campbell SJ, Simoglou Karali C, Johanssen VA, Bristow C, Cheng VWT, et al. Selective blood–brain barrier permeabilization of brain metastases by a type 1 receptor-selective tumor necrosis factor mutein. Neuro Oncol. 2022;24(1):52–63.



